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Abstract
We deal with introducing a new algorithm for solving the optimal shape problems in
which they are defined with respect to a pair of geometrical elements. The problem is
to find the optimal domain approximately for a given functional that is involved with
the solution of a linear or nonlinear elliptic equation with a boundary condition over
a domain. The Shape-Measure method, in Cartesian coordinates, will be used to find
the nearly optimal solution in two steps. By transferring the problem into a measure-
theoretical form, first we will find the solution of the elliptic problem for a given domain
by using the embedding method. Then the Shape-Measure method will be applied to find
the best domain approximately. An example will be given.

1 Introduction and Problem
Consider the optimal shape (optimal shape design) problems in which they are defined
with respect to a pair of geometrical elements; this pair consists of a measurable set
(in JR2 ), which can be regarded as a domain, and a simple closed curve containing
a given point, which is the boundary of the set. By considering the property for the
desired curves to be simple, the problem depends on the geometry which is used. In
polar coordinates, we solved the similar problem in [1]. But in Cartesian coordinates,
it is difficult to introduce a linear condition which determines the property of a closed
curve being simple. Thus here we consider some limitation on shape in order to make
sure that it is simple. The problem will be solved in two stages. First, by use of measures,
the value of the objective function will be calculated for any given domain. Then the
optimal domain will be obtained by use of optimization techniques.

Let D C !R2 be a bounded domain with a piecewise-smooth, closed and simple
boundary OD. We assume that, somen part of OD is fixed and the rest, F, with the given
initial and final points A and B respectively, is not fixed. Here we suppose that the fixed
part of OD is made by three segments, parts of lines y = 0, x = 0 and y = I between
points A(1,0), (0. 0), (0, 1), B(1, 1) (see Figure 1).

Thus F is chosen as an appropriate variable curve joining A and B so that D is
well-defined. Let u(X) (X (x, y) G NR2 ) be a bounded solution of the following elliptic
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FIG. 1. An admissible domain D under the assumptions of the numerical work.

equation:

Au(X) + f(X, u) = v(X), UlD = 0, (1.1)

where X E D -+ v(X) e NR is a bounded real function (v also can be considered as afixed control function); the function f is assumed to be a bounded and continuous real-

valued function in L2 (D x IR). Moreover the above domain D is called an admissible if
the equation (1.1) has a bounded solution on D; we denote by D as the set of all such
admissible domains. We are going to solve the problem of minimizing the functional
I(D) = fD fo(X, u) dX, on the set D where f. is a given continuous, nonnegative, real-
valued function on D x JR. To calculate the value of I(D) for a given domain D, it, is
necessary first to identify the solution of (1.1).

2 Weak solution and metamorphosis
In general, it is difficult to identify a classical solution for the problem like (1.1) and
usually one tries to find a weak (generalized) solution of them. Hence the variational
form of (1.1) is introduced in the following; we remind the reader that HO'(D) -

{0 E H1 (D) : 0ID = 01, where H'(D) is the Sobolev space of order 1.

Proposition 2.1 Let u be the classical solution of (1.1), then we have the following
equality:

ID (uO+ Of) dX = JD Ov dX, VO c Hol(D). (2.1)

Proof: Multiplying (1.1) by the function V) E Hi(D) and then integrating over D, with
use of the Green's formula (see [3]) gives fD(uAO +Of -- v) dX = fLD('ik -- u ) dS,
where n is the unit vector normal to the boundary OD and directed outward with respect
to D. Because 0l,, = 0 and ul6 D = 0, then (2.1) is satisfied. El
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Definition 2.2 A function u C H1 (D) is called a bounded weak solution of the problem
(1.1) when it is bounded and satisfies the equality (2.1) for all V) E HO (D) (the conditions
for existence of the weak solution of the problem (1.1) and also the boundedness property
of it, have been considered in many references, like [3] and [2]).

Now we apply our new way which is called the Shape-Measure method. Let =_ U x D,
where U C JR is the smallest bounded set in which the bounded weak solution u(.)
takes values. Then by applying the Riesz Representation Theorem ([6]), a bounded
weak solution can be represented by a positive Radon measure; the proof of the following
Proposition is similar to the Proposition 3.1 in [1].

Proposition 2.3 Let u(X) be a bounded generalized solution of (1.1); there exist a
unique positive Radon measure, say t,,, in M+(Q) such that:

u(F) =_ F d, = D (X u) dX ; VFEC(Q). (2.2)

Thus the equality (2.1) can be changed to pi,(FV,) = "v,, VO E H•(D), where F, =
uAib + f V and -yV = fD bv dX. Also, I(D) = pu,(fo). Because the measure Pu projects
on the (x,y)-space as the respective Lebesgue measure, we should have ,() = ac,
where ý : Q --+ BR depends only on variable X (i.e. ý E C1(Q)), and aC is the Lebesgue
integral of ý over D. Therefore the original problem can be described as follows:

To find a measure pu E M+(() so that it satisfies the following constraints:

p,, (F) = lyp, VV) E gC (D);

Pu(V) = aC, Vý E C1 (Q). (2.3)

As Rubio did in [5], to be sure that we do not miss any solution, we extend the underlying
space; instead of finding a measure tt,, G M+(£), introduced by Proposition 2.3 and
equalities (2.3), we seek a measure p E M+(Q) which satisfies just the conditions:

p(Fp) = 'yp, VO E HC (D);

/u(ý) = aý, Vý E CI(A). (2.4)

3 Approximation
The system (2.4) is linear because all the functions in the right-hand-side of equations
are linear functions in their argument p. But the number of equations and the underlying
space are not finite. We shall develop this system by requiring that only a finite number
of the constraints are satisfied. This will be achieved by choosing countable sets of
functions whose linear combinations are dense in the appropriate spaces. But first we
should approximate the unknown part of the boundary just by the finite number of its
points. This idea comes from the approximation of a curve by broken lines. For the given
D and hence for the given F, let A, = (x,, ym), m = 0, 1, 2,. .. , M, be a finite number
of points on I (where A0 = A). We link together each pair of consecutive points Am
and Am,+ for m = 0,1,..., M - 1 and close this curve by joining the points AM1 and
B together. Now the resulted shape, which is denoted by &DAI, is an approximation for
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aD; we also call the domain which introduced by its boundary 8DM as DM (see Figure
1).

It is possible that by increasing M, the curve 8DM will become closer and closer (in
the Euclidean metric) to the curve aD, and hence one may conclude that the minimizer of
I over DM, if it exists, tends to the minimizer of I over D, if it exists. But some difficulties
could arise (too oscillatory a curve may cause problems). Thus, we will fix the number of
points. For a given M, let the value of the components Y1, Y2,..., YM, be fixed. Because
xm is a free term, the point Am could be anywhere on the line y = Yi, x> 0 for every
m (see Figure 1). Therefore points Am and A,,+i can be chosen so that they belong to
F and hence the part of F between the lines y = Ym and y = Ym+i can be approximated
by the segment AmAm+i. Hence, we do not lose generality. Thus, we fix the components
y12,y , YM with the values Y1, Y2 ,. . ., YM, respectively.

Now we introduce the set {Ii E Hd(D): i = 1, 2,... } so that the linear combin-
ations of the functions {fi} are uniformly dense (that is, dense in the topology of
the uniform convergence) in H0 (D). We know that the vector space of polynomials
with the variable x and y, P(x,y), is dense in C m(D); therefore the set Po(x,y)
{p(x,y) E P(x,y) I p(x,y) = 0,V(x,y) E aD}, is dense (uniformly) in {h E C m (D):
hla = 0} =_ C•(D)}. Since the set

Q(x,y) = {1,x,y, x 2 ,xy, y 2,x 3 ,x 2 y, xy2 ,y 3 ,... }

is a countable base for the vector space P(x, y), each elements of P(x, y) and also Po(x, y),
is a linear combination of the elements in Q(x, y). By Theorem 3 of Mikhailov [3] page
131, the space C'(D) is dense in H 1 (D); thus the space C0

00 (D) will be dense in Ho4(D).
Consequently, the space P0 (x, y) is uniformly dense in HO (D). We define

M
,Oi(x, y) = xy(y - 1) HJ(x - x, + y - Yl)qi(x, y), (3.1)

1=1

where qi E Q(x, y). Therefore 0l1 = 0 and the set {O•(x, y) : i = 1, 2,... }, is total (dense
in the topology of the uniform convergence) in Ho (D).

For the second set of functions, let L be a given positive integer and divide D into L
(not necessary equal) parts D1 , D2 ,.. •, DL, so that by increasing L the area of D,, s =

1, 2, ... , L, will be decreased. Then, for each s we define:

U 1 if (x, y) G Ds,
0 otherwise.

These functions are not continuous, but each of them is the limit of an increasing sequence
of positive continuous functions, {1Sk6}; then if p is any positive Radon measure on 0,

= limk__ 0• f(6k). The linear combination of functions {6j : j = 1, 2,..., L} for all
positive integer L, can approximate a function in C, (Q) arbitrary well (see [5] Chapter
5).

By selecting just the finite number of functions in the mentioned spaces the problem
(2.4) can be replaced by another one in which we are looking for the measure -M1l,M 2 E
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M+÷(Q), so that it satisfies the following constraints:

1M1 ,M2 (Fi) = -Yi, i =1,2,...,MA;

pLMi,M 2 (6j) = aj, j= 1,2,... ,M 2 , (3.2)

where M1 and M 2 are two positive integers and F =- FV,, , aj = acj. If
we denote by Q(M1 , M2 ) the set of positive Radon measures in M +(Q) which satisfy
equalities (3.2), and also denote by Q the set of positive Radon measures in M + (0) which
satisfy equalities (2.4), one can easily prove the following Proposition by considering the
proof of Proposition III.1 in [5].

Proposition 3.1 : If M 1 ,M 2 - co then Q(Mi,M 2) - Q; hence for the large
enough numbers M1 and M 2 the set Q can be identified by Q(M 1 , M 2 ).

But even if the number of equations in (3.2) is finite, the underlying space Q(M1 , M 2 )
is still infinite-dimensional. By Theorem A.5 in the Appendix of [5], UMN,,, in (3.2)
can be characterized as I = ZMI+2 a,6(Z,), with triples Z, E 9 and the
coefficients an > 0 for n = 1,2,.... ,M 1 + M2 , where 6(z) E M+(r) is supposed to
be a unitary atomic measure with support the singleton set {z}. Thus the measure
problem is equivalent to a nonlinear one in which the unknowns are the coefficients a.,
and supports {Znj. Proposition 111.3 of [5] Chapter 3, states that the measure /tM,,M 2
has the following form

N

E Z n6(Zn), (3.3)

where Zn, n = 1, 2, ... , N, belongs to a dense subset of Q. Now let us put a discretization

on Q2, with the nodes Zn, = (x, Yn, u,?), in a dense subset of Q; then we can set up the
following linear system in which the unknowns are the coefficients an:

a, :> 0, n =1, 2,..., N;

N
E a, Fj (Z,,) =yi, i=1, 2,..., Mj;

n=1

N

anj(Zn) = aj, j =1, 2,...,M2 . (3.4)
n=1

The solution of (3.4) is not necessary unique (even if the problem (1.1) satisfies
the necessary conditions for having a unique bounded weak solution), because of the
approximation scheme.

4 The optimal solution
The main aim of the present section is to find an optimal domain D* E DAI so that
the value of I(D*) will be the minimum on the set Dp,1 . By applying the result of the
previous section, a solution of (1.1) can be found. Indeed, it is approximated by a solution
of the linear system (3.4) according to the variables, x,,, m = 1, 2,... AM. As mentioned,
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this solution is not necessary unique. Let us specify one by solving the following linear
programming problem

N

Minimize: Y a.f.(Z.)
n=1

Subject to :an >_ 0, n = 1, 2,...,N;

N
)7,anFi(Zn) = ")i, i = 1, 2,..., ,M;

n=1
N

1: On~j (Zn) = aj, j = 1, 2,..., ,M2. (4.1)

n=1

Thus, for each D, the value I(D) = fDfo(X,u) dX - fo) - /1M 1 ,M2 (fo), is defined
uniquely in terms of the variables Xm, m = 1, 2,..., M. So, we set up a function, J, on
DM defined by D G DM -+ I(D) I'M1,M 2 (fo) where j1M1 ,M 2 (fo) = En-i anfo(Zn)"
Clearly J can be regarded as a vector function:

J : (X1,X2,...,XM) JERM p IM 1 ,M 2(fo)E CR. (4.2)

Since J is a real-valued function which is bounded below, and is defined on a compact
set (since constraints are to be put in the variables), it is possible to find a sequence of
points so that the value of the function along the sequence tends to the (finite) infimum
of the function. The coordinate values corresponding to the points in the sequence are of
course finite. Now, suppose that (x*, x*, ... , x*) is the minimizer of the vector function
J; it can be identified by using one of the related minimization methods. The introduced
domain by the minimizer is denoted by D*. We assume in the following theoretical result
that the minimization algorithm which is used, is perfect; that is, it comes out with the
global minimum of J in its (compact) domain.

Theorem 4.1 : Let M, M, and M 2 be the given positive integers which were defined in
section 3, and D* be the minimizer of (4.2) as mentioned above. Then D* is the min-
imizer domain of the functional I over DM and the value of I(D*) can be approximated
by J(D*); moreover J(D*) - I(D*) as M 1 and M 2 tend to infinity.

Proof: Suppose D* is not the minimizer of I; hence there exists a domain, call D',
in DM so that I(D') < I(D*). Proposition 2.3 shows that there is a unique measure,
call M', in M+(Q) so that I(D') = p'(fo), and also Proposition 3.1 states that for
sufficiently large numbers M 1 and M 2 , I'(fo) can be approximated by /t4,M2 (f' ) in
Q(M 1 ,M 2). Thus, I(D') [.~M1 ,M 2 (fo) = J(D'). In the same way, one can show that
J(D*) approximates I(D*); so I(D*) - ,*M1,M2 (fo) = J(D*). Hence J(D') < J(D*).
which is contrary with the fact that D* is the minimizer of J. Moreover, from Proposition
3.1 it follows that J(D*) tends to I(D*) as M 1 ,M 2 - oc. C
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5 Numerical example
We consider the elliptic equations (1.1) with

V(,y 1 if (X,y) E D nC,0 otherwise,

where C is the square [ x,3][¼, 3 (see Figure 1). We also take M = 8, M1 = 10, M 2 = 8,
N = 740 (the 36 number of nodes are chosen so that ulo, = 0) and suppose Y1 , Y2 ,. ,Y

are 0.15, 0.25,...,0.85, respectively. By extra constraints, x,, _> 3, m = 2, 3,...,7, the
.3 3

value of -y" for any D E DM is defined as yj = fl fj bi(x, y) dxdy, i = 1,2,..., 10. We
4 4

also assume that the function u takes values in U =[-1,1], and consider the polynomials
qj (x, y) as 1, x, y, x 2, xy, y 2, x 3, x2 y) xy 2, y 3. The function fo is chosen as f, = (U _ 0. 1)2.

This function can be considered as a distribution of heat in the surface for the system
governed by an elliptic equations.

In minimization, we apply the Downhill Simplex Method in Multidimension by using
the Subroutine AMOEBA (see [4]) and also consider an upper bound for variables
(suppose they are not higher than 2). These conditions are applied by means of the
penalty method (see [7]). Hence, for the nonlinear case of the partial differential equations
(1.1), we have taken f(x,y,u) = 0.25u 2 , and used the initial values as X,, = 1.0,m =
1, 2, ... ,8, and the stopping tolerance for the program (variable ftol in the Subroutine
AMOEBA) as 10-7. We remind the reader that the functions F, and the values of yi,
i = 1, 2,..., 10, have been calculated by the package "Maple V.8'. The results are: the
optimal value of I = 0.45467920356379, the number of iterations = 502, the value
of the variables in the final step are X, = 1.05019, X2 = 1.08521, X3 = 0.750001,
X4 = 0.768701, X 5 = 1.12986, X 6 = 1.13775 ,X 7 = 0.97783, Xs = 1.61566, which
represent the optimal domain, shown in the Figure 2.
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FIG. 2. The initial and the optimal domain for nonlinear case of elliptic equations.


